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Genetic Algorithms and Classifier Systems: Foundations
and Future -tions

John H. Holland

The University of Michigan

Akutract

Thsm?timl quutions about classifiw syst.aas, with rcirc mmtptions, apply
qually to othw udaptim nmb~ net-kg (ANNs) such as th?
an.nmtiom.st models of agn.itivo psyoholagy, th~ immuno sys-m, ocmnomie
systmns, -la@a, and Camtic syskms. This mm dk’llssss pm-vasivc
~ss af AUNs and t~ hinds of math-tics m-t to qwdions
dmut Uiw pr~fii-, It discusssm relevant fuactiond oxbnsions of tho
MC classtfi~r syst@m and ●xtaksions of th? ?xtant matbmcitiea.1 thmry.
An appmd.in Molly reviews scimc of the k- thmmms about olassificr
mstmns

Cla=tier systams are exampks of e brad class of systems
sometwms called w’u#r~w mti~ Jwtwwk$ (ANNs, her-r)
Brmdly cha.racterti, ckdmr systems, and ANW m general,
cormst of a large num.k of umt4 that (1) m~rect m a
r-ionhnmr, comptltlve fduon, and (2) are mmhki by va.nous
oprators w that the system as whole prcgr~xvely adapts to lts
emnronment Ty~cdy an ~ mn.fronts an enmmnment that

exhh~ prptua.1 novelty and it an function (or mntmue to
ernst) OTdy by makmg oontmud ●daptatmns to that
ww~t -W ANN/envwonment mtuactlons are
mmpk, Q m -cmlly canutramai c90w, an ANN usually
opra~ & h qubkum ANTW fomi the care of arms of
study M ~ m ~twe pycholqy, artdmd mtalhgence,
mmonuca, unmusqemm, genet]m, and amkgy

Fhw?a!4iwi+

Cla8dler systems are q.ute typical ANNs so that qumtlons

a.kut classtilers, suitably translati, are typically qu~tlons hut
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ANNs and vice ~ersa. To carry out the translation it IS

necessay to identify the munt.crparts in other A.NNs of the

m-ge P--@ r~=~ called ch.+kv~ that are the units of
cksi.fier is n~ to identify the counterparts in other ANNs
of the message- prmessing rules, IAM L-Y’s.W%R, that are the
uni- of classifier systems, For example: In genetics, the
counterparts are ch.rom,omm~; in game them-y md ecanornb,
they are (rukdefinal) strategies; in immunogenesis, antigens; in
wn.nectionist versions of cognition, (fommlly-defined) neurons;
and so on. Under such translation it is relatively easy ‘to
identify a range of imp-tant thmretical questions that apply to
cla=ifier systems in pnrticuh.r and ANNs in general:
[Th = Wmtions, and some of the ensuing discussions, mre

prmunted assuming that the reader has some km.i.lia.rity with
Holland et al. [1986] or Holland [1975]. There is simply nu~
enough rcum here ti define the -s; a =der fa.mil.iar with
the literature mncxxning mme other ANN should h able to make
the rekvant translation in mmt cases, ]

(1) What pm.meters and opratms favor the emergence of
stable hierarchical covers such as default hierarchies, internal
mdels, and the like (via an incread diversity of uni~ and
progr~ively more mmpli~td interactions htween them)?
(2) Are the familiar “emlqiml’ interactions -- parasitism,
symbimis, com~titive exclusion, et-c. -- a mmmon feature of 9L
p.rallel, nonlinear competitive systems?

(3) Are multi-functional uni~ (units that - ~ne in several
mn~) the major st+@ng-stone employd by all ANNs in
making adaptive advan-?
(4) Whet environmental renditions favor ramnbimtion,

im~~ . ~, md tihm wnstra.ird or biased prmalurcs
for genemting ww tials (ruks, chromowmes, organizational
Structurw, ok.)?
(5) Whm8 -vironmenti cmxi.itions favor tracking vs

averaging, @aration m. exploitation, ok, ?
(5) What Cambinatiom of oprators yield implicit parallelism?

Trmhtmnal mmthematl~ vnth Iti relmnw upn lmearlt y,

convergence, hxd pnts, md the We, smrns to offw few timls

for studying such questions Yet, vnthout a relevant
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rnathematid framework, there is less cha.nm of understanding

ANNs than there would h of understanding physical phenomena
in the absence of guidance from thmretiml physics. A

mathematics that puts emphasis on combinatorics and

Competition Mwm pmllel pr~ is the key to understanding

A.NNs What seems startling when one u= differential
equations, where the emphasis is on mntinuit y, is commonplace in
a progr amrn.ing or recursive format, where the emphasis is upm
wmbi.natori~. (Consider, for example, the chaotic regimes that

are so unexpcted in the context of differential quations, but are
m everday ~na, in the gui= of biased random nu.mker
generators, in the pmgmmm@ mntmrt. )

-use classifier systems are fcm’nally defined and

Wmputer-tienti, with an emphasis on ~laf.ion Md
competition, they offer a us+d tit-ind for M mathematical
md simulation studk of MUM. We already haw some thmrems
that provide a d- understanding of the kmhavior of classifier
systems (~ the Appendix), and simulations suggest a brmder
cla~ of theorems that delineate the renditions under which
in-al mdels (q- morphisms) emerge in reupnse to mmplex
environment (IMland [1986b]).

By putting cla=ifier systems in a br=der context, we mn

ting to b relevant pim of mat.hemati= from other studies.
For instance, in mathematiml axmomics there are pi- of
mathuxnatics that dml with (1) hierarchical organization, (2)
retained earnings (fitn~) as a m~sure of pst prformanca, (3)
cmrqmtition kd on retained m.nlings, (4) distribution of
ea.rnin@ m the *S of ~ti inturactkm of ~SUmWS and
supplkm, ‘(S) -tiun as a control on efficiency, and (6) division
of * ktwwn prduction and r~ch (exploration versus
Uxplom* . Many of these fragmerb, mut-atis mutendis, can
kuudtostuldy thecounter~ of these praa#es in other

Arms

As another exaqde, m mathematical
pi= of mathematics dmhng wth (1) rmhe
exploiting enfn.ronmental Opportumtms) ,

mkgy there are
uxphbtwn (maieh

(2) phylqenet~c
hemrchms, plymorplusm and enford divershy (comptmg
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subsystems), (3) functional umvergenm (similarities of subsystem
organizatmn enforced by environmental requirements on ~yoff
attainment), (4) symbiosis, parasitism, and mimicry (muplings

and interactions in a default h.ierarch y, such as an increased
efficiency for extant generalis- simply -use related s~ialists
exclude them from same regions in which they are inefficient),
(5) fd chains, predator-prey relations, and other energy
transfers (apportionment of energy or pyoff amongst mmpment
subsystems), (6) r~mbination of multifunctional co-adapted sets
of genes (r emmbination of building blinks), (7) a~rtative
mating (biasd or triggered remrn.bimtion), (8) phenotypic
markers ahcting interspcies and intras~ies interactions
(couplilg), (9) “founder” effccti (generalist giving rise to
s~ahs+s) , and (10) other detailed mm.monal.ities such m
tracking versus averaging over environmental changes
(-~nmtion for environmental variability), allelcchemicals
(crosv inhibition), I.inhgu (association and encuii.ng of features),
and still others On= again, though mathematical amlogy is a
young science, there is much in the mathemati= that has ken
develo@ that is relevmt ta the study of other nonlinear systems
far from equilibrium.

The task of themy 1s to explain the prvaslven~ of thuse
features by elucidating the general mmhamsms that a~ure them

emergence and evolutmn Properly apphui to clafier systems,
or to ANNs m general, such a thmry nuhtatus aga.mst ml hm
s.olutlons, asmrmg robustness and adapta.knhty for the remdtmg
orpuzat~on One of the bst ways to insure that the
mmhamsms investigated are general IS “to lmk over your
shoulder’ ~ently to ~ d the m~hamsms apply to all ANNs
Tlus vmw AS sharpuned d we py cl- attuntlon to features
sharai by ,11 AN’N~:
(1) ~M aqpulmYtm All AFJNs exhht an luerarchml
Orga.ruaatlon In hving systems protums cumbme h form
organelles, wluch wmbme to fomn d t-, and m on, through

organs , Orgarusms , s’paes, and ultimately uxdqp= EcOnorrues

mvolw mhwduals, deprtmenb, chvmons, compxum, -onuc

Sa3tJxs, arid w on, untd one reaches natmnal, regmnal, and
world ~mrnms A sundar story can km told for mch of the

areas cited I%s stmctura.1 swndant~es are more than supr-
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c-:-l
1lUMI . A cl-r look #JcIws thed the hierarchies are constructed
on a “building blmka principle: Subsystems at each level of the
hierarchy are constructed by combination of small numbers of
subsystems from th~~ next lower level. Because even a small
numker of building blocks can be combined in a great variety of
ways there is a gnat space of subsystems to be tried, but the
search is biased by the building blocks selected. At each level,
there is a continued search for subsystems that will serve as
suitable building Minks at the next level.
(~) &f?]~&$i?~iLV3. A still closer look shows that in all cases the
search for building blocks is carried out by competition in a
ppulation of candidates. Moreover there is a strong relation
between the level in the hierarchy and the amount of time it
takes for competitions to h resolved -- ecol~as work on a much
longer time- scale than proteins, and world emnomies change
much more slowly than the departments in a company. More
carefully, if we assmiate random variables with subsystem
ratings (say fitnesses), then the sampling rate decreases as the
level of the subsystem increases. As we will see, this has
profound effects upon the way in which the system moves
through tiie space of possibilities.

(3) &mx!P4flt? s,@&v?3J”4!!r*htrl??Mnt if3t~ctJiv3. An ANN
interacts with its environment in a game-like way: Sequences of
action (“moves”) mcasionally produce ~,9& special inputs that

provide the system with the wherewithal for continued existence
and adaptation. Usually pyoff can be treatd as a simple

~Mtity (energy in physics, fitness in genetics, money in
economics, wirm.ings in game thmry, reward in psychol~, error
in mntrol thaw, etc. ) It is typical that payoff is sparsely
distributed in the environm ent and that the adaptive systum
must com-~ lb it with other systems in thu environment.
(4) ~tiw d q@v7tti. The environment typical-y
exhibiti a q~ of r@arities or nfi-~m that can ke exploited by
dMer8nt &cthn sapxas or whw?qpkt, As a result the
environment w- a variety of procescn that interact in
mmplex ways, much as in a multi- prson game. WmlJy there
is no super-process that can outcorqmte all other:~ so an ~Iogy
results (domains in physics, WemEting species in Gcohgical
genetics, companies in ecmomics, cdl assemblies in
neuroph ysiologbl psychol~, etz. ) ~ The very mmplexity of
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these interactions assures that even large systems over long time

spans can have explored only a minuscule range of possibilities
Even for much-studied bard games such as chess and go this is
true; the not so simply defined “games” of ecological genetics,
economic competition, immunogenesis, CNS activity, etc. , are
orders of magnitude more complex. As a con+ence the
systems are always far from any optimum or equilibrium
situation.
(5) E@i.wt%w rm P@vl!!tiLm. There is a tradeoff between
ewptvvthw and +dnickw%m. In order to explore a new niche a
system must use new and untxied action sequences that take it
inti new parts (state sets) of the environment. This can anly

occur at the cost of departing from action suquences that ‘have
well-established payoff rates. The ratio of exploration to

exploitation in relation to the oppxtunities (niches) offered by the
environment has much to do with the life history of a system.
(6) Tmdihg rm tira-gzhg. There is also a tradeoff Mween
“tracking” and “averaging”. Some puts of the envitonrnent
change so rapidly relative to a given subsystem’s response rate
that the sub-system can only react to the average dfect; in
other situations the subsystem can actually change fast enough to
reqmnd ‘move by move”, Again the relative proprtion of these
two possibilities in the niches the subsystem inhabits has much to

do with the subsystem’s life history t
(7) NnnAkWk,,. The value (“film-”) of a giwn combination of
building blocks’ often cannot k predicted by a summing up of
~UeS assigned to the mmponent blocks.

(

Thk nonlinm.rity

Cummonly Canal qlvktwk in genetics) kds to co-adapted sets
of blocks (& ) that sarve to bias sampling and add additional
layem to #e hierarchy.
(9) t%u~. At all levels, the cmrptitive interactions give rise

~Y=

s cd the familiar infractions of ppdation biology

~xilhm , mvnptjt~”cm axduxkw , and the like.
(9) 6&mmsb“ 94S and spWkAk!t. subsystems can often b usefully
dividai into ~ti (averaging over a wide variety of
situatmns, with s consquent high sampling rab and high
statistical confidence, at th cost of a relatively high emor rat-

in individual situations) md spwAt&kts (reacting to a restricted

class of situations with eI lowered error ra~~, bught at the cost

of a low sampling rate),
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(10) Mdtwmviwditv. Subsystems often exhibit mu.lti-
functionality in the s&se that a given combination of building
blcds can usdully exploit quite distinct niches (environmental

regul=tities), typically with different efficiencies. Subsequent
recam.bi.nat.ions can praiu~ s~ializatians that emphasize one
function, usually at the cnst of the other. Extensive changes w
kehavior and dficienc y, tc@her with extensive ds~tir.w
m&9tJi7n, m result from r~rnbinations involving these
multifunctional founders.
(11) A3tmd l?ll.dak ANNs usually genera- implicit internal
malels of their environments, mdels progressively revised and
improval as the system accumulates exprienm, The systems
J’L%lm. Consider the pr~esive improvement of the immune
system when fad with antigens, and the fact that one can
infer much abut the sys@rn’s environm ent md hi- by
linking at the antigen ppulation. This ability to infer mmething
of a system’s en~rironrnent and history from its changing internal
organization is the diagnostic f-tu.ro of an implicit internal
maiel 1 The maiels encountered are usually ~a@tV’rm -- they

~ify prefemed reqmn= ta given environmental sta- -- but,
for more cmnplex systems (the CNS, for example), they may

al= k more brmdly pmiiv!!r.m spcifying the results of
alternative courses of action, The relevant mathematical cxxwept
of a male] of pr~ like transformations is that of a hmO-
J?3L7.@f.v?l. Real systems almout never admit of mdels mwting
the requirements for a homomorphism (“camrn utativity of the
diagram”), but there are ~enings, the so-calki ~mwphkvm
(ipmi-hmmwnqh.+ . The tigin of a hierarchy can be linked
up es a squenca of pr~tively refina! q-morphisms
(S@fiCdy ~~S of Markov pr~ ) ksd Upm
Obsunmtkm:

The ~ questions and cornmona.lities, ~ther with

some of the probl~ms alnmdy encmmterd in simulations, have

alr-dy sue extensions of the sta.ndw-d definitions (as in
Hoiland [1980]) of classifiers Sy~S ~

One unptant change involves the way bids are usd m
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detaining the winners of mm~tititions for activation. The
standard way of doing this is to calculate a Ad = [bid
ratici]*[strength]. Under this arrangement, the lmal fixed @.n~
of classifiers are such that a generalist and a s~ialist active in
the same situations will crime to bid the same amount (bcauw
the strength of the generalist increases to the pint of
compensating for its smaller bid ratio, see the Ap~ndix). This
goes against the dictum that specialists should be favored in a
mm~tition with generalists. To mm~nsate for this an ev%~tirca
lid is dculatd by reducing the N in proprtion to the
generality of t.hc classifier praiucing the bid. The e.kkt~r.w Ad is
then used in determinkg the pro~ility that the classifier
generating it is one of the winners of the camptition. If the
classifier wins it must piy the bid, mnt the ~tive bid, to its
suppliers under the bucket brigade. Thus, the laal fixed pints
are not cha.ngd, but s~ialists am favored in cnmptition with
generahsti. This change gccs a long way Ward raiuci.ng
instabilities in emergent default hierarchies. (We are still
exploring the effec~ in simulations and, at the level of thmry,
the resulting rndi.fications in global fixed @nts) .

A related change conmms the methd of detemn.hi.ng a
cla~ifier’s prohbilit y of praiucing offspring, its fitness, under the

genetic algorithm. The higher strength of a generalist at i~ local

fixed @nt greatly favors it in the production of offsptig, and
simulations indicate that this overbia~ the evolution of the

system toward the offspring of generalists. The simplest way of
com~sating for this is to make the fitness proportional to [bid
ratio] *[strength] rather than strength alone. In intuitive terms,
this mak~ -the fitn~ prqm-tional to the classifier’s ptential for

affuting the system (its bid can km thought of as a ‘phenotypic”
effe6t), mther than i~ resemms (strength is a quantity
detennind by its “genotypic’ fixai-@nt), We have yet to

~ mt OJl me - of simulations lmsd on fitness
so-d etamlind

Sunulatlons haw also ruveald two other effmti wurth
systematic mmtlgatmn The first of th~ 1s the %xussmg”

effmt of the SIZO of the m~ge M (~ R R.Io10’s ppr m t}us
PTocedlngs) In effmt, a small message list forms the system to
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ccncentrata m a few factors in the current situation. Clearly
there is the possibility of making the size of the message list

depend upn the ‘urgency” of the situation. For example, during
%mkahead” the message list’s size can b quite large to encourage
an exploration of possibilities, while at “execution” time the size
can b reduced to enform a decision. Clearly, the system can
use classifiers to control the size of the message list. This makes
the siz depndent upm the system’s “reading= of the current
situation, and the ‘reading” is subjti~ to long-term adaptive
change under the genetic algorithm.

A sewnd simple effect is to revise the definition of the
environment, or equivalently the definition of the system’s speed,
so that typical stimuli prsist for several time-steps. (This
comespnds to the fact that the CNS cprates rapidly relative to
typical changes in its environment -- usually, milliseconds vs.
tenths of a second. ) The resulting ‘persistence” and “overlap” of
input messages makes it much easier for the classifier system to
develop causal mcdels and assmiative links (sac HOW). As yet,
to my knowledge, no simulations have been built along these
Lines.

At a much more general (and speculatiw) level, use of
t@gw# genetic opraton provide a major extension of genetic

Cd@thms . Triggering amounts to invoking genetic operatars
with selected arguments, when certain Prrdefinal conditions are
satisfied.

AS ~ 8XWTI@ d a tri-g

following: ‘only genural clasdiers that

canditimt consider the
~UC8 ~ bids are

activatd * the ‘current input m-yp:”. When ths Conditmn-—. . . . .

recurs it ~ ● sign that the system h~s little s~fic mformatlon
* ~ with the current envwonmental situation. Let this
conditi ~ e cross between the input message and the

mmiitiun prts of some of the active general rules. The result
vnll b plausible new rules wth more spdic conditmns. T&
amounts @ a Mtorn-up prmuhwe for praiucing mdidate rules
that will automatically k testd for usefulness when sundar
sltuatiom recur



As another example of a triggering rendition consider: “Rule C
has just made a large profit under the bucket brigade. ”
Satisfaction of this condition signals a propitious time b couple
the profitable classifier to its stage-setting precursur. An
appropriate cross Mw- the mmge prt of a tie Co active on

the immediately pr~g tim~step -- the precursor -- and
the oondition part of the profit-making successor can prcduce a
new pair of muyvid IwIes. (The tri~er is flL7~ adivd.d if co is

already COU@ed to C). The coupled, offspring pair malels the
state transition mediated by the original pair of (uncnupled)
ruk. Such coupled rules can sene as the building blinks for
mcdels of the environment. Because the cmplings sexwe as
“bridges= for the bucket brigade, these building blinks will h
assigned crdit in accard with the efficacy of the mmkls
umstructed from them. Interestingly enough there seems to h
a rather small nu.rrhr of robust triggering conditions (~ Holland
et al. [1986]), but mch of them would appm.r ta add
substantially to the respmiveness of the classifier system.

Tags are particularly affected by triggering renditions that
provide new couplings. Tags serve as the glue of larger systems,
providing lmth assmiative and tenqmral (mcdel-bu.ilding) pointers.
Under certain kinds of triggered cnupling the message sent L) the

precursor in the coupled @r can have a ‘hash- cded” section
(say a prefix or suffix). The purpse of this hash-cxxied tag is to
prevent amidenta.1 eavesdropping by other classifiers -- a
sufficient nurn&r of randomly generated bits in the tag will
prevent amidental matches with other conditions (unless the tag
qion in the candition ~ of the ~tial eavesdropper consists
mostly +“s)I If tlm muplai ~ provm useful to the syswm then
it will ~ ~ offspring under the genetic algorithm. and
th~ ~ oftun will kmcauplai to other rules in the system.

Typically, tSe tag will b ~ssed on to the offspring, ~rving as a
mmman elarnent in all the couplings. The tag will only prsist if
the resulting cluster of n.ks prmws w be a useful “subroutine”.
In this cam, the ‘subroutine” can h “caki” by messages that

incorpmts the tag, -use the cmxiitions of the roles in the
cluster we satisfied by such messages.



in Wrt, t-he tag that. was irlitially W.emtied at ramiom

now ‘names” the developing subroutine. It evsn has a m t%l#Lin&
in terms of the actions it calls forth. Morwver the tag is

subject to the same kinds of recmnbination as other’ @ of the
rules (it is, after all, a schema). As such it can serve as a
budding bimk for other tags. It is as if the system were
inventing spdxds for its internal use. Clearly, any simulation
that provides for a test of these ideas will b an order of
magnitude more snphistimted than anything we have tried to
date . Runs involving hundreds of thousands of ti.mesteps and
thousands of cladiers will pro~ly h mqu.ird to -t thusz
ideas.

S@yzvt is another t.dmique that adds considerably to the
sys-’s flexibility. Basically, supprt is e technique that enekk
the classifier system to in’~ate many piaz8 of ~ial

in.fomtation (such as several views cf a prtially okacu.d object)
to arrive at strong inclusions. S.qqmrt is a quantity that
travels kiih mmges, rather than bing a counterflow as in
the ca~ of bids, When a clatim is satisfiai by swerel
messa~ from the message List, each such m~ge adds its
supprt into that classifier’s wtyyw? munt%sc Unlike a clasifier’s
strength, the supprt e~ruai by a classifier lasts for only the
time-step in which it is a~ulati. That is, the supp%
counter is r-t at the end of mch timrstep (other tdm.iques
are ~ible, such as e long or short half-life). Su@ is ud
to mrrlify th,e ti of the classifier’s bid on that tim~stap; large

suppoxt iJIC~- the bid, small supprt d--sea it. If the
cladier wins the bidding wm@tion, the m~ge it pts
cm-rim a su~ _tionaA to the s& of i~ bid. The

~b d SU~ over suts of Wupld clafiem acts
mmewhat W spading activation (~ Ander~ [19e3]), but it
is much * ~. It ~ bring asacciations (caupAed rules)
into play Wltih ~ its primary mission of integrating pmrtial
inflmneticm (meemge8 from seved -y-bidding, general rules
that smtisfy the ~ clatier) ,

In addition to th~ bnxi.ly conwivd ~sions, there are
more s~ial extensions thnt may have glokd consequences,
particularly in res~t to incread respnsiven~ end robustnes.
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One of these conams a simple redefinition of classifiers. The

standard definition of a 2-condition classifier requires that =L-l
condition k satisfied by some me.ge on the message list, in
cfit an AND, rquiri.ng a message of typ X and a message of
typ Y. It is a simple thing to replace the implicit AND with
other string oprators, e. g. a bit-by-bit AIJD m a binary sum of
the satisfying messages, which is then pssd through as the
outgoing m~ge. This extension has ben implemented, but has
not bn systematically tested.

Other simple extermons impect the
algmithm. It is easy to intralum,
classifier, pumtffatihn mwis that

functicming of the genetic
m the string defining a
bias the probability of

crosmver (say cramwer is twice as likely to take plain adjamnt
to a punctuation mark). These punctuation marks are not
in~ in exmuting the cla~ifier, but they bias the form of
ih offspring under the genetic algorithm. Punctuation marks mn
b treatd as alleles under the genetic algorithm, subjmt to
mutation, crossover, etc. , just as the other (function-defining)
alleles. This ensures that the pla~ment of punctuation marks is
adaptively determined, Similarly one can intrd..me mw!J@ t~a~
that restrict crosmver to classifiers with similar tags; again the
tags, as part of the classifier, can km made subject to mdi-
fimtion and mlection by the genetic algorithm.

Finally, there are two bmd ranges of investigation, far
keyond anything we yet understand either theoretically or
empirical y, that offer intriguing ~ibilities for the future, One
of tn~ stems from the fact that classifier systems are

general-~. They can km prcgra.mmd initially to implement
whetewr ~ knmldge is atiable to the designer; laaming
then allmn the system to eqmnd, mrrect errors, and trmsfex

in%rmatim % one domain to another. It is imprtant b

provide ways of instructing such systems so that they can
generate rul- -- @n@tive hypthm -- on the ksis of advice
It is ah inprtant that we understand how lmkahead and
virtuol explorations m.n b inmr~atd without disturbing other
activities of the systsm, Littlehas b done in either dirmtion

The other realm of investigation conmrns fully-directed rule

12



generation. In a precursor of cla=i.fier systems, the lumdcssl
AZn&W~ (Holland [1975]), provision was made for the genera-
tion of rides by other rules. With minor changes to the

definition of classifier systems, this puabihty m k

rein+ rcducd. (Both m=ges and rules are strings. By enlarging
the message alphebt, lengthening the mage string, and

intralucing a special symhl that indicates whether a string is to
be intmpreted as a rule or a message, the task m ~
acmmplished. ) With this provish the system can invent its

own candidate opsrators and rdm of inference. Sunival of th-
meta- (oprator-like) rules should then h made to depnd on
the net uAulness of the rules they generate (much as a =hema
takes it value from the average value of iti mrriers). It is

prokbly a matter of a decade or two bfore we can do anything
Umful in this ~.

Mfthmmhid fitw3.wiu3s.

There are at lmst two hder mathematical tasks that
should b undertaken. One is an attampt tm prduce a general
c!mractition of systems that exhibit hnpkit psmkhkm Up
ta now all such attempk have led to set= of algorithms that are
easily rmst as genetic algorithms -- in effect, we still only
know of one example of an algorithm that exhibits implicit
~allelism.

The ~d ask involvm developing a mathematical
formulation of the pr~ whereby a system dowlop a ussful
internal maiel of an environm ent exhibiting prptuel novelty.
Inour(prelkm ‘ ~) oxpriments to datu, th- mabh typically

exhibit a - (tangld) hierarchical stnmture with a~iatiw wup-
lings. As rntiond wlier, such -ctures mn h charac~
ma~y m quaai-homomorphisms (rw Holland et al ~
[1906]) . Tlw prptual nwdty of the environment - b
charecturid by a Markov pr~ k which ~ch stab has a
r~enm tima that i8 large reletiw b any bsible o~ation

time. Considerable pr~ mn k made along them lhm (-

Holland [19S6b]), but much remains to k done, In
we a n~ b cnnstnlct an inturlding
(1) a more globl * of fixed @nt

sut of thmrems
thmrems that

pmkll.lar,
Imd on:
relates the

13



‘.

strengths of classifiers under the bucket brigade to &served

payoff statistics;
(2) a ‘a uf thmrems that rela&s budding blinks exploited by the
“Slow” dynamics of the genetic algo~”ithm to the sampling rates
for rules at different levels of the emerging default hierarchy
(more general ties are tested more of-ten); and
(3) a set of theorems (based on the previous two suts) that detail
the weAy in which various kinds of environmental regularities are
exploited by the genetic algorithm acting in terms of the
strengths assigned by the bucket brigade.

J~PY=~~f!’

A simplified version of the fundamental theorem for genetic
algorithms - b stitud as follows (for an explanation of terms,
see Holland [1975] or Holland [1986a]).
Theorarn (hqnkit pzfwAk&.xn3), Given a fitmm J%cthn

u: (o,l}%%dsf, a PTFLU’W%WB(t) of M stxings drawn from the

set {O,1}k, and any .Q-ACWWs E {O,1,+}kdefining a hyprplano in

(O,l}k,
M~(t+l) 2 u“S(t)~M~(t),

where Ms (t+ 1) is the expctd nurnbr of instan- of s in

B(t+l),

U“S(t) = x
b~s-b~(t)

u(tmJt),

IS the average observed fitness of the instancas of schema s m
B(t), and

~ = (1 -(k~- llPw=/(k- 1]),

1s ~ ‘- -~” induced by crossover, where p~~s IS a

cons-t d tha genatic algorlthm (oftmt PwH~ = 1) gAvuIg the

proprtmn. d strings undergoing crossover in a given genera-
tion, and

Outem’mst

Under

kg +1 is the number of crossover pn~ htwwn the

defining symbols of s

intqxetation, the

E (O,l,qk

implicit pralldism tkxem says
that the sampling rate for mqv schema with instan~ m the
ppulatlon is e~t.ad to incrmse or decrema at a rate spamfied

14



hy its observed average fitness, with an

defining length.

Theorem (..qf ). The nuhr of

an error < ~ under a genetic- -algorithm

error proportional to its

schemas pr~ with

considerably exceds #

for a ppu.lation of size M = Z1’2k’, where ~ = k’/’k.

l%emem (Bucht hn&wde had htd-ptmt ) . If, under the

bucket brigade algorithm, Ic is the long-term avarage income

(after taxes) of a classifier C, and rc is iu bid-ratio, then im

strength Sc will approach I#c

Theorem ( ~mLv@Mm pmuhmn,~r ; for definitions, = Holl~d
et al. [1985]). A q-morphism of n levels, in which each
successive level u- k or fewer additional variables to define
exceptions ta the previous level, and in which the rules at each
ievel are correct over at least a propxtion p of the instances
satisfying them, rqui.res no more than

~jn2~k( 1-p)j - 1 rules. (A hornnmorphism dnfinai on nk variables

r~~m 2* ~-) For n-10, k=2, p=O.5, the q-morphism
requires fewer than 212 ndeS, while a comespnding homm

morphism would rquire z20 roles, that i-, the homomorphism

would rapire at least 256 t&s as many ru.lea as the

q-morphism
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